Matching and Factor-Critical Property in 3-Dominating-Critical Graphs∗

نویسندگان

  • Tao Wang
  • Qinglin Yu
چکیده

Let γ(G) be the domination number of a graphG. A graphG is dominationvertex-critical, or γ-vertex-critical, if γ(G − v) < γ(G) for every vertex v ∈ V(G). In this paper, we show that: Let G be a γ-vertex-critical graph and γ(G) = 3. (1) If G is of even order and K1,6-free, then G has a perfect matching; (2) If G is of odd order and K1,7-free, then G has a near perfect matching with only three exceptions. All these results improve the known results. Keyword: Vertex coloring, domination number, 3-γ-vertex-critical, matching, near perfect matching, bicritical MSC: 05C69, 05C70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . C O ] 2 8 A ug 2 00 6 Factor - Critical Property in 3 - Dominating - Critical Graphs ∗

A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ(G). A graph G is said to be γ-vertex-critical if γ(G− v) < γ(G), for every vertex v in G. Let G be a 2-connected K1,5-free 3-vertex-critical graph. For any vertex v ∈ V (...

متن کامل

. C O / 0 60 86 72 v 1 2 8 A ug 2 00 6 Factor - Critical Property in 3 - Dominating - Critical Graphs ∗

A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ(G). A graph G is said to be γ-vertex-critical if γ(G− v) < γ(G), for every vertex v in G. Let G be a 2-connected K1,5-free 3-vertex-critical graph. For any vertex v ∈ V (...

متن کامل

Factor-critical property in 3-dominating-critical graphs

Let γ(G) be the domination number of a graph G. A graph G is domination-vertex-critical, or γ-vertex-critical, if γ(G− v) < γ(G) for every vertex v ∈ V (G). In this paper, we show that: Let G be a γ-vertex-critical graph and γ(G) = 3. (1) If G is of even order and K1,6-free, then G has a perfect matching; (2) If G is of odd order and K1,7-free, then G has a near perfect matching with only three...

متن کامل

Matching properties in connected domination critical graphs

A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let c(G) denote the size of any smallest connected dominating set in G. A graph G is k-connected-critical if c(G)= k, but if any edge e ∈ E(Ḡ) is added to G, then c(G+ e) k − 1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G ...

متن کامل

Matchings in 3-domination-critical Graphs: a Survey

A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted by γ(G) and called the domination number of G. Graph G is said to be γ-edgecritical if γ(G + e) < γ(G) for each edge e / ∈ E(G) and is said to be γ-vertex-critical if γ(G − v) < γ(G), for every vertex v in G. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008